

Data Accessibility for Resource Selection in
Large-Scale Distributed Systems

 Bachina Anusha #1 P.Venkata SubbaReddy #2 T.V. Sai Krishna #3

 M.Tech Student, Associate Professor in CSE Associate Professor in CSE

 QIS College of Engg &Tech., QIS College of Engg &Tech QIS College of Engg &Tech

 Ongole,A.P, Ongole,A.P Ongole,A.P

Abstract—Large-scale distributed systems provide an attractive scalable infrastructure for network applications. However, the
loosely coupled nature of this environment can make data access unpredictable, and in the limit, unavailable. We introduce the
notion of accessibility to capture both availability and performance. An increasing number of data-intensive applications require not
only considerations of node computation power but also accessibility for adequate job allocations. For instance, selecting a node
with intolerably slow connections can offset any benefit to running on a fast node. In this paper, we present accessibility-aware
resource selection techniques by which it is possible to choose nodes that will have efficient data access to remote data sources.
We show that the local data access observations collected from a node’s neighbors are sufficient to characterize accessibility for
that node. By conducting trace-based, synthetic experiments on Planet Lab, we show that the resource selection heuristics guided
by this principle significantly outperform conventional techniques such as latency-based or random allocations. The suggested
techniques are also shown to be stable even under churn despite the loss of prior observations.

Keywords—Data Accessibility, resource selection, passive network performance estimation, data-intensive computing, large-scale
distributed systems.

1 INTRODUCTION

LARGE-SCALE distributed systems provide an attractive
scalable infrastructure for network applications. This virtue
has led to the deployment of several distributed systems in
large-scale, loosely coupled environments such as peer-to-peer
computing [1], distributed storage systems [2], [3], [4], and
Grids [5], [6], [7]. In particular, the ability of large-scale
systems to harvest idle cycles of geographically distributed
nodes has led to a growing interest in cycle-sharing
systems [8] and @home projects [9], [10]. However, a major
challenge in such systems is the network unpredictability and
limited bandwidth available for data dissemination. For
instance, the BOINC project [11] reports an average throughput
of only about 289 Kbps, and a significant proportion of
BOINC hosts shows an average throughput of less than 100
Kbps [1]. In such an environment, even a few megabytes of data
transfer between poorly connected nodes can have a large
impact on the overall application performance. This has
severely restricted the amount of data used in such
computation platforms, with most computations taking
place on small data objects.

Emerging scientific applications, however, are data-

intensive and require access to a significant amount of
dispersed data. Such data-intensive applications encompass a
variety of domains such as high-energy physics [12], climate
prediction [13], astronomy [14], and bioinformatics [15]. For
example, in high-energy physics applications such as the
Large Hadron Collider (LHC), thousands of physicists
worldwide will require access to shared, im-mutable data at
the scale of pet bytes [16]. Similarly, in the area of
bioinformatics, a set of gene sequences could be transferred
from a remote database to enable comparison with

Input sequences [17]. In these examples, performance depends

critically on efficient data delivery to the computational nodes.
Moreover, the efficiency of data delivery for such applications
would critically depend on the location of data and the point of
access. Hence, in order to accommodate data-intensive
applications in loosely coupled distributed systems, it is essential
to consider not only the computational capability, but also the
data accessibility of computational nodes to the required data
objects. The focus of this paper is on developing resource
selection techniques suitable for such data-intensive applications
in large-scale computational platforms.

Data availability has been widely studied over the past few
years as a key metric for storage systems [2], [3], [4]. However,
availability is primarily used as a server-side metric that ignores
client-side accessibility of data. While availability implies that at
least one instance of the data is present in the system at any given
time, it does not imply that the data are always accessible from
any part of the system. For example, while a file may be available
with 5 nines (i.e., 99.999 percent availability) in the system, real
access from different parts of the system can fail due to reasons
such as misconfiguration, intolerably slow connections, and other
networking problems. Similarly, the availability metric is silent
about the efficiency of access from different parts of the network.
For example, even if a file is available to two different clients,
one may have a much worse connection to the file server,
resulting in much greater download time compared to the other.
Therefore, in the context of data-intensive applications, it is
important to consider the metric of data accessibility: how
efficiently a node can access a given data object in the system.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1910

The challenge we address is the characterization of

accessibility from individual client nodes in large distributed
systems. This is complicated by the dynamics of wide-area
networks, which rule out static a priori measurement, and the cost
of on-demand information gathering, which rules out active
probing. Additionally, relying on global knowledge obstructs
scalability, so any practical approach must rely on local
information. To achieve accessibility-aware resource selection,
we exploit local historical data access observations. This has
several benefits. First, it is fully scalable as it does not require
global knowledge of the system. Second, it is inexpensive as we
employ observations of the node itself and its directly connected
neighbors (i.e., one-hop away). Third, past observations are
helpful to characterize the access behavior of the node. For
example, a node with a thin access link is likely to show slow
access most of the time. Last, by exploiting relevant access
information from the neighbors, it is possible to obviate the need
for explicit probing (e.g., to determine network performance to
the server), thus mini-mizing system and network overhead.

Our key research contributions are as follows:

. We present accessibility estimation heuristics which employ
local data access observations, and demon-strate that the
estimated data download times are fairly close to real
measurements, with 90 percent of the estimates lying
within 0.5 relative error in live experimentation on
PlanetLab.

. We infer the latency to the server based on the prior neighbor
measurement without explicitly probing the server. For
this, we extend existing estimation heuristics [18], [19],
[20] to more accurately work with a limited number of
neighbors. Our enhancement gives accurate results even
with only a few neighbors.

. We present accessibility-aware resource selection techniques
based on our estimation functions and compare to the
optimal and conventional techniques such as latency-
based and random selection. Our results indicate that our
approach not only outper-forms the conventional
techniques, but does so over a wide range of operating
conditions.

. We investigate the impact of churn prevalent in loosely
coupled distributed systems. In fact, churn is critical to
our resource selection techniques because we assume that
nodes lose all past observations when they join the
system again. Despite this stringent memory-loss
property, the results show that our techniques perform
well even under a certain degree of churn.

2 ACCESSIBILITY-BASED RESOURCE SELECTION

In this section, we present our system model followed by an
overview of the accessibility-based resource selection algorithm
that uses data accessibility to select appropriate compute nodes in
the system.

2.1 System Model

Our system model consists of a network of compute nodes that
provide computational resources for executing applica-tion jobs
and data nodes that store data objects required for computation.

In our context, data objects can be files, database records, or any
other data representations. We assume that both compute and
data nodes are connected in an overlay structure. We do not
assume any specific type of organization for the overlay. It can be
constructed by using typical overlay network architectures such
as unstructured [21], [22] and structured [23], [24], [25], [26], or
any other techniques. However, we assume that the system
provides built-in functions for object store and retrieval so that
objects can be disseminated and accessed by any node across the
system. Each node in the network can be a compute node, data
node, or both.

Since scalability is one of our key requirements, we do not
assume any centralized entities holding system-wide information.
For this reason, any node in the system can submit a job in our
system model. A job is defined as a unit of work which performs
computation on an object. To allocate a job, a submission node,
called an initiator selects a compute node from a set of
candidates. We assume the use of a resource discovery
algorithm [7], [8], [27], to determine the set of candidate nodes,
though it may not consider data locality in its choice. Once the
initiator selects a node, the job is transferred to the selected node,
called a worker. The worker then downloads the data object
required for the job from the network and performs the
computation. When the job execution is finished, the worker
returns the result to the initiator.

Formally, job Ji is defined as a computation unit which
requires object oi to complete the task. We assume that objects,
e.g., oi, have already been staged in the network and perhaps
replicated to a set of nodes Ri ¼ fr

1
i; r

2
i; :::g based upon

projected demand. The job Ji is submitted by the initiator. From
the given candidates C ¼ fc1; c2; :::g, the initiator selects one
(i.e., worker 2 C) to allocate the job.

2.2 Resource Selection
Fig. 1 illustrates the resource selection process in our system
model once the initiator has a set of candidate nodes to choose
from. To select one of the given candidates, the initiator first
queries the candidates for relevant information that can be used
for job allocation, since there is no entity with global information
(Fig. 1a). The candidates offer the relevant information (Fig. 1b),
based on which, the initiator allocates the job to the selected
worker (Fig. 1c). To incorporate the impact of data access on the
performance of job execution, our goal is to select the best
candidate node in terms of accessibility to a data node (server)

holding object oi.
Due to the decentralized nature of our system, we would like

to make this selection without assuming any global knowledge.
To achieve this goal, we use an accessibility-based ranking
function to order the different candidate nodes. Since our goal is
to maximize the efficiency of data access from the selected
worker node, we use the expected data download time as the
metric to quantify accessibility. Thus, given a set of candidates C

for job Ji that requires access to object oi, each candidate node cm

returns its accessibility accessibilitycm ðJiÞ in terms of the

estimated download time for the object oi, and

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1911

Fig. 1. Accessibility-based resource selection. (a) Initiator asks accessibility estimation to candidates. (b) Candidate offers estimated accessibility
to initiator. (c) Initiator selects the best candidate based on the reported accessibility.

the initiator then selects the node with the smallest accessibility
value. Note that since we are assuming lack of any global
knowledge, these estimates are based on the local information
available to the individual candidate nodes. Therefore, sometimes
the candidate cannot provide any meaningful estimate of its
accessibility to the required data object. In this case, the
candidate simply returns a value of 1, indicating the lack of any
information. The initiator would filter out such a candidate. If all
candidates return 1, one of the candidates is randomly selected.

Formally, the selection heuristic Hs is defined as follows:

Hs : C ! cm such that

accessibility
cm ð

J
iÞ ¼ n min

1;::;C ðaccessibilitycn ðJiÞÞ:
¼ j j

Having described the accessibility-based resource selection
process, the question is how the candidate nodes can estimate
their accessibility using local information (e.g., their own
observations to the object if known or their neighbors), and what
factors they can use for this estimation. We explore this question
in the next section.

3 ACCESSIBILITY ESTIMATION
3.1 Accessibility Parameters
To answer the above question, we first investigate what
parameters would impact accessibility in terms of data download
time. Intuitively, a node’s accessibility to a data

object will depend on two main factors: the location of the data
object with respect to the node and the node’s network
characteristics such as its connectivity, bandwidth, and other
networking capabilities. We have explored a variety of
parameters to characterize these factors, and found some
interesting correlations. For this characterization, we con-ducted
experiments on Planet Lab [28] with 133 hosts over three weeks.
In these experiments, eighteen 2 MB data objects were randomly
distributed over the nodes, and over 14,000 download operations
were carried out to form a detailed trace of data download times.
To measure internodes latencies, an ICMP ping test was repeated
nine times over the three-week period, and the minimal latency
was selected to represent the latency for each pair. We next give a
brief description of the main results of this study.

The first result is the correlation of latency and download
speed (defined as the ratio of downloaded data size and download
time) between node pairs. Fig. 2a plots the relationship between
RTT and download speed. We find a negative correlation ðr ¼

₃0:56Þ between them, indicating that smaller latency between
client and server would lead to better performance in
downloading. Thus, latency can be a useful factor when
estimating accessibility between node pairs.

In addition, we discovered a correlation between the download
speed of a node for a given object and the past average download
speed of the node, as shown in Fig. 2b (r ¼ 0:6). The intuition
behind this correlation is that past download behavior may be
helpful to characterize the node in terms of its network
characteristics such as its con-nectivity and bandwidth. For
example, if a node is

Fig. 2. Correlations of access parameters. (a) Correlation of RTT and download speed. (b) Correlation of download speed and past average
download speed.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1912

connected to the network with a bad access link, it is almost
certain that the node will yield low performance in data access to
any data source. This result suggests that past download
behavior of a node can be a useful component for
accessibility estimation.

Based on the statistical correlations we discovered, we next
present estimation techniques to predict data access capabilities
of a node for a data object. Note that we do not assume global
knowledge of these parameters (e.g., pair-wise latencies between
different nodes), but use hints based on local information at
candidate nodes to get accessibility estimates. It is worth
mentioning that it is not necessary to estimate the exact download
time; rather our intention is to rank nodes based on accessibility
so that we can choose a good node for job allocation.
Nonetheless, if the estimation has little relevance to the real
performance, then the ranking may deviate far from the desired
choices. Hence, we require that the estimation techniques
demonstrate sufficiently accurate results which can be bounded
within a tolerable error range.

3.2 Self-Estimation
As described in Section 3.1, latency to the server

1
 and download

speed of a node are useful to assess its accessibility to a data
object. We first provide an estimation technique that uses
historical observations made by a node during its previous
downloads to estimate these parameters. Note that these past
downloads can be to any objects and need not be for the object in
question. We refer to this technique as self-estimation.

To employ past observations in the estimation process, we
assume that the node records access information it has observed.

Suppose H
i
h is the ith download entry at host h. This entry

includes following information: object name, object size,
download elapsed time, server, distance to server, and time
stamp. As a convention, we use dotð:Þ notation to refer to an

item of the entry, for example, H
i
h:size represents the object size

in the ith observation at host h, and jHhj denotes the number of
observations at host h.

We first estimate a distance factor between the node and the
server, based on their internode latency. For this, we consider
several related latency models for the distance metric: RTT and
square root of RTT. These are often used in TCP studies to
cope with congestion efficiently to improve system throughput.
Studies of window-based [32] and rate-based [33] congestion
control revealed that RTT and square root of RTT are inversely
proportional to system through-put, respectively. We consider
both latency models for the distance metric and compare them to
see which is preferable later in this section. The mean distance of
node h to the servers is then computed by

1 XjHhj
Distance

h ¼ jHhj ₃ i¼1 H
i
h
:distance:

We then characterize the network characteristics of the node
by estimating its mean download speed based on

prior observations. The mean download speed of node h is
defined as

 jHhj i

DownSpeedh ¼
1
₃

X
i1

H
hi:elapse

h:size :

h

 jH j ¼ H

Using the above factors, we estimate the expected download
time for a host h to download object o as

SelfEstimhðoÞ ¼ ₃ ₃
sizeðoÞ

; ð1Þ

DownSpeedh

where

₃ ¼
distance

hð
server

ð
o

ÞÞ :

 Distanceh

Here, sizeðoÞ means the size of object o, server ðoÞ means the
server for object o, and distanceaðbÞ means the distance
between nodes a and b.

Intuitively, The parameter ₃ gives a ratio of the distance to the

server for object o to the mean distance it has observed. Smaller ₃
means that the distance to the server is closer than the average
distance, and hence, its estimated download time is likely to be
smaller than previous downloads. The other part of (1) uses the
mean download speed to derive the estimated download time as
being proportional to the object size.

To see how well self-estimation performs, we con-ducted a
simulation with the data set mentioned earlier in this section. To
assess the accuracy, we compute the ratio of the estimated result
to the measured one. Thus, an estimated-to-measured ratio of 1
means that the estimation is perfect. If the ratio is 0.5, it means an
underestimation by a factor of 2, whereas a ratio ¼ 2 means an
over-estimation by a factor of 2. In the simulation, the node
attempts estimation using (1) with the observations it measured in
the data set. The estimation was performed against all the actual
measurements.

Fig. 3 presents the estimation results of self-estimation in a
cumulative distribution graph with the ratio of the
estimated to the measured. As can be seen in the figure, p

RTT shows better accuracy than the native RTT. Using p
RTT , nearly 90 percent of the total estimations occur within a

factor of 2 (i.e., within 0.5 and 2 in the x-axis). In contrast, the
native RTT yields 79 percent of the total estimations within the
same error margin. Based on this result, we make use of the

square root of RTT as the distance metric.
2
 With this distance

metric, we can see that a significant portion of the estimations
occur around the ratio 1, indicating that the estimation function is
fairly accurate. We will see in Section 4 that this level of accuracy
is sufficient for use as a ranking function to rank different
candidate nodes for resource selection.

We then investigated the impact of the number of observations
in estimation. For this, we traced how many estimates reside
within a factor of 2 against the measured ones, and observed that
self-estimation produces fairly accurate results even with a
limited number of observations. Initially, the fraction was quite
small (below 0.7), but

1. For ease of exposition here, we assume each data object is located on a single
server. However, we relax this assumption and consider data replication in our
experiments in Section 4.9.

p

2. We set distance ¼ RTT þ 1, where RTT is in milliseconds and 1 is added to
avoid division by zero.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1913

Fig. 3. Self-estimation result.

Fig. 4. Snapshot of DP changes.

it sharply increased as more observations were made. With 10
observations, for example, the fraction goes beyond 0.8, and
approaches 0.9 with 20 observations. This result allows us to
maintain a finite small number of observations (by applying a
simple aging-out technique, for example) to achieve a certain
degree of accuracy.

Since self-estimation is not required to have prior observations
for the object in question, it must first search for the server and
then determine the network distance to it. Search is often done
by flooding in unstructured overlays [34] or by routing messages
in structured overlays [23], [24], [25], [26], which may introduce
extra traffic. Distance determina-tion would require probing
which adds additional overhead.

3.3 Neighbor Estimation
While self-estimation uses a node’s prior observations to estimate
the accessibility to a data object, it is possible that the node may
have only a few prior download observations (e.g., if it has
recently joined the network), which could adversely impact the
accuracy of its estimation. Further, as mentioned above, self-
estimation also needs to locate the object’s server and determine
its latency to the server to get a more accurate estimation. This
server location and probing could add additional overhead and
latency to the resource selection.

To avoid these problems, we now present an estimation
approach that utilizes the prior download observations from a
node’s neighbors in the network overlay for its estimation. We
call this approach neighbor estimation. The goal of this
approach is to avoid any active server location or probing.
Moreover, by utilizing the neighbors’ informa-tion, it is likely to
obtain a richer set of observations to be used for estimation.
However, the primary challenge with using neighbor information
is to correlate a neighbor’s download experience to the node’s
experience given that the neighbor may be at a different location
and may have different network characteristics from the node.
Hence, this work is different from previous passive estimation
work [35], [36] which exploited topological or geographical
similarity (e.g., a same local network or a same IP prefix). Instead
we characterize the node with respect to data access, and then
make an estimation by correlating the characterized values to
ones from the neighbor, thus

enabling the sharing observations without any topological
constraints between neighbors.

To assess the downloading similarity between a candi-date
node and a neighbor, we first define the notion of download
power (DP) to quantify the data access capability of a node. The
idea is that a node with higher DP is considered to be superior in
downloading capability to a node with lower DP. We formulate
DP for a host h as follows:

DPh
 1

jHhj₃ Hih
i
:size h

i
:distance₃: 2

 ¼ h Xi1 h:elapse ₃ H ð Þ

 jH j ¼ H

Intuitively, this metric combines the metrics of download
speed and distance defined in the previous section. As seen from
(2), DP / download speed which is intuitive, as it captures how
fast a node can download data in general. Further, we also have
DP / distance to the server which implies that for the same
download speed to a server, the download power of a node is
considered higher if it is more distant from the server. Consider
an example to understand this relation between download power
and distance. Suppose two client nodes, one in the US and one in
Asia, access data from servers located in the US. Then, if the two
clients show the same download time for the same object, the one
in Asia might be considered to have better downloading
capability for more distant servers, as the US client’s download
speed could be attributed to its locality. Hence, access over
greater distance is given greater weight in this metric. To
minimize the effect of download anomalies and inconsistencies,
we compute DP as the average across its history of downloads
from all servers. Fig. 4 shows a snapshot of DP value changes for
10 sampled nodes. We can see that DP values become stable with
many more observations over time. According to our observa-

tions, node DP changes of greater than ₃10 percent were less than
1 percent of the whole.

Now, we define a function for neighbor estimation at host h
by using information from neighbor n for object o:

NeighborEstimhðn; oÞ ¼ ₃ ₃ ₃ ₃ elapsenðoÞ; ð3Þ

where

₃ ¼
DP

n ; ₃ ¼ distance
hð

server
ð
o

ÞÞ
; DPh distancenðserverðoÞÞ

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1914

Fig. 5. Neighbor estimation result.

and elapsenðoÞ is the download time observed by the neighbor
for the object. It is possible that the neighbor has multiple
observations for the same object, in which case we pick the
smallest download time as the representative.

Intuitively, to estimate the download time for object o based
on the information from neighbor n, this function uses the
relevant download time of the neighbor. As a rule, the estimation
result is the same if all conditions are equivalent to the neighbor.

To account for differences, we employ two parameters ₃ and ₃.
The parameter ₃ compares the down-load powers of the node and
the neighbor for similarity. If the DP of the node is higher than
the neighbor, the function gives smaller estimation time because
the node is considered superior to the neighbor in terms of

accessibility. The parameter ₃ compares the distances to the
server, so that if the distance to the server is closer for the node

than the neighbor’s, the resulting estimation will be smaller.
3

These correlations enable us to share observations between
neighbors without any topological restrictions.

Fig. 5 illustrates the cumulative distribution of neighbor
estimation results. Like the simulation in self-estimation, the
estimation was made against all the actual measure-ments with a
relevant observation measured in any other node. In other words,
for the measured one, an estimation was attempted for every
single observation that any other node measured for that object.
As seen from the figure, a substantial portion of the estimated
values are located near the ratio 1. Nearly 84 percent of
estimations reside within a factor of 2 of the corresponding
measurements. This suggests that neighbor estimation
produces useful information to rank nodes with respect to
accessibility.

While neighbor estimation is useful for assessment of
accessibility, multiple neighbors can provide different
information for the same object. For example, if three neighbors
offer their observations to a node, there can be three estimates
which may have different values. Thus, we need to combine these
different estimates to obtain more accurate results. We examined
several combination functions, such as median, truncated mean,
and weighted mean, and observed that taking the median value
works well even with a small number of neighbors. Given that
the number of neighbors providing relevant observations

3. We discuss how the server distance can be estimated without active probing
in Section 3.4.

may be limited in many cases, we believe that taking the median
should be a good choice. Hence, combining multiple estimates is
done by

NeighborEstimhðoÞ ¼ medianðNeighborEstimhðni; oÞÞ;
for all ni 2 N

0
, where N

0
 is a subset of the neighbor set N (N

0
 ₃

N), which only includes neighbor nodes offering
NeighborEstimhðni; oÞ.

We observed that combining multiple estimates with the
median function significantly improves the accuracy. Although
omitted due to space reasons, estimation with four neighbor
observations yielded nearly 90 percent of estimates within a
factor of 2, while it was 84 percent with a single neighbor
observation. It becomes over 92 percent with eight neighbor
observations.

To realize neighbor estimation, it is necessary to gather
information from the neighbor nodes. This can be done by on-
demand requests, background communications, or any hybrid
form of them. Piggybacking on periodic heartbeats in the overlay
network can be a practical option to save overhead.

3.4 Inferring Server Latency without Active Probing
While neighbor estimation requires latency to the server as a
parameter (see (3)), we can avoid the need for active probing by
exploiting the server latency estimates obtained from the
neighbors themselves. If a neighbor has contacted the server, it
could obtain the latency at that time by using a simple latency
computation technique, e.g., the time difference between TCP
SYN and SYNACK when perform-ing the download, and this
latency information can be offered to the neighbor nodes. By
utilizing the latency information observed in the neighbor nodes,
it is possible to minimize additional overhead in estimation in
terms of server location and pinging.

According to the study in [39], a significant portion of total
paths (>90%) satisfied the property of triangle inequality. We
also observed that 95 percent of total paths in our data satisfied
this property. The triangulated heuristic estimates the network
distance based on this property. It infers latency between peers
with a set of landmarks which hold precalculated latency
information between the peers and themselves [20]. The basic
idea is that the latency of node a and c may lie between

jlatencyða; bÞ ₃ latencyðb; cÞj and latencyða; bÞ þ latency
ðb; cÞ, where b is one of the landmarks (b 2 B). With a set of

landmarks, it is possible to obtain a set of lower bounds (LA) and

upper bounds (UA). If we define L ¼ maxðLAÞ and U ¼

minðUAÞ, then the range ½L; U& should be the tightest stretch
with which all inferred results may agree. For the inferred value,
Hotz [18] suggested L because it is admissible to use A* search
heuristic, while H and all linear combinations of L are not
admissible. Guyton and Schwartz [19] employed ðL þ UÞ=2, and
most recently, Ng and Zhang reported U performs better than the
others [20].

In our system model, we can use neighbors as the landmarks
because they hold latency information both to the candidate and
to the object server. By applying the triangulated heuristic,
therefore, we can infer the latency between the candidate and the
server without probing.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1915

Fig. 6. Latency inference results. (a) Absolute error. (b) Relative error.

However, we found that the existing heuristics are inaccurate
with a small number of neighbors which may be common in our
system model. Hence, we enhance the triangulated heuristic to
account for a limited number of neighbors.

Our approach works by handling several situations that
contribute to inaccuracy. For example, it is possible to have L >
U due to some outliers, for which the triangle inequal-ity does not
hold. Consider the following situation: All but one landmark give
reasonable latencies, but if that one gives fairly large low and
high bounds, the expected convergence would not occur, thus
leading to an inaccurate answer. To overcome this problem, we

remove all Li 2 LA, which are greater than U, so we can make a
new range that satisfies L < U. After doing so, we observed that
taking simple mean produces much better results than the
existing approaches.

We also observed a problematic situation where a significant
portion of the inferred low bounds suggest similar values, but
high bounds have a certain degree of variance. This happens
where node c is close to a but the landmarks are all apart from
node a. For this, we consider a weighted mean based on

standard deviations (₃). The intuition behind this is that if
multiple inferred bounds suggest similar values for either low or
high bounds, it is likely that the real latency is around that point.
We take the weighted mean when it fails to converge due to the
range being too wide, where picking any one of L, U, and ðL þ
UÞ=2 is likely to be highly inaccurate. The weighted mean is
defined as follows:

L ₃ ₃1 ₃ ₃ ₃LA₃ ₃ þ U ₃ ₃1 ₃ ₃ ₃UA₃ ₃:
ð LA þ UA Þ ð LA þ UA Þ

We report the evaluation results with the absolute error as
well as the relative error for clarity. For example, if we think of
two measured latencies 1 and 100 ms, and the corresponding
estimations 2 and 200 ms, then these two estimations give the
same picture with respect to the relative error (i.e., relative error
¼ 1 in this example). In contrast, they convey different
information with respect to absolute error. In fact, 1 ms
difference is usually acceptable, but 100 ms error is not for
latency inference.

Fig. 6 demonstrates the inference results. As reported in [20],
the heuristic employing U is overall better than the

other two existing heuristics. However, we can see that our
enhanced heuristic substantially outperforms the existing
heuristics with respect to both relative and absolute error metrics.
In particular, the enhanced heuristic works well even when the
number of landmarks is small. Since the number of neighbors
which can offer the relevant latency information may be limited,
the enhanced heuristic is desirable in our design. In other words,
it is possible to infer the latency to the server with fairly high
accuracy even in the case where only a few neighbor nodes can
provide relevant information.

4 EVALUATION
4.1 Experimental Setup
We conducted over 100,000 actual downloading experi-ments for
a span of five months with 241 PlanetLab nodes geographically
distributed across the globe. For this, we deployed a Pastry [25],
[40] network, a structured overlay based on a DHT ring. We
distributed data objects of four sizes: 1, 2, 4, and 8 MB, over the
network, each object with a unique key. We then generated a
series of random queries so that the selected nodes perform
downloading the relevant objects. Table 1 provides the details of
the download traces. In the simulations, we use a mixture of all
traces rather than individual traces, unless otherwise mentioned.

To evaluate resource selection techniques, we design and
implement a simulator which inputs the ping maps and the
collective downloading traces and outputs performance results
according to the selection algorithms. Initially, the simulator
constructs a network in which nodes are randomly connected to
each other with a predefined neighbor size without any locality or
topological considerations. To

TABLE 1
Download Traces

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1916

Fig. 7. Performance over the time.

minimize error due to the construction, we repeated simulations
50 times and report the results with 95 percent confidence
intervals as needed. After constructing the network, the simulator
runs each resource selection algo-rithm. Initially, it constructs a
virtual trace in which the list of candidates and the download
time from each candidate are recorded. The candidate nodes are
randomly chosen for each allocation. As the candidate may have
more than one actual download record for a server, the download
time is also randomly selected from them. The simulator then
selects a worker based on each selection algorithm. Based on the
selected worker, the download time is returned from the virtual
trace.

For our evaluation, we compare the resource selection
techniques based on our estimation techniques with two
conventional techniques: random and latency-based selec-tions.
The following describes the resource selection techniques:

. OMNI: Optimal selection;
. RANDOM: Random selection;
. PROXIM: Latency-based selection;
. SELF: SELF basically performs the selection by self-

estimation. One exception is that it allows the node to
make an estimation by partial observations if it has any

observations to the object server.
4
 This can improve

accuracy. If no estimate is available, it performs random
selection;

. NEIGHBOR: NEIGHBOR performs the selection based on
neighbor estimation. If no estimate is available, it
performs random selection.

4.2 Performance Comparison over Time
We begin by presenting the performance comparison over time.
Fig. 7 compares the performance over the 100,000 consecutive
job allocations. As the default, we set both the candidate size and
the neighbor size to 8 (and it is applied to all the following
experiments, unless otherwise mentioned). Overall the proposed
techniques yield good results: SELF is the best across time and
NEIGHBOR works better than PROXIM most of the time. RANDOM
yields poor performance

sizeðoÞ
4. This is done by a simple statistical estimator: DownSpeedh ðsÞ , where

DownSpeedhðsÞ stands for the mean download speed from the node to the
server.

with a significant degree of variation, as expected. PROXIM is
about three times of optimal with a relatively high degree of
variation compared to the suggested techniques. SELF works best
approaching about 1.4 of optimal at the end of the simulation.
This shows that simple consideration of past access behavior in
addition to latency greatly benefits to choose a good candidate.

NEIGHBOR is poor at first, but outperforms PROXIM after
about 6,000 simulation time steps. This is because there may be
many more chances of random selection at first stage; after
warming up, however, it exploits neighbor observations, leading
to better performance. Nonetheless, NEIGHBOR shows a
noticeable gap to SELF. This can be explained mainly by the hit
rate on the number of relevant observations from the neighbors;
we observed that the average number of observations was around
2 even at the end of the simulation, while neighbor estimation
yields stable results with more than four observations, as
discussed in Section 3.3. Thus, NEIGHBOR could perform better
with a higher hit rate; improving hit rate is part of our future
work.

4.3 Impact of Candidate Size
In our system model, a set of candidate nodes is evaluated for its
accessibility before allocating a job. We now investigate the
impact of candidate size (jCj). Fig. 8 demonstrates the
performance changes with respect to candidate size. In Fig. 8a,
mean ratio to optimal increases along the candidate size. This is
because OMNI has many more chances to see better candidates to
choose from, resulting in the larger performance gaps.
Nonetheless, we can see that the suggested techniques work better
with many more candidates, making the slopes gentle compared
to the conventional ones. Fig. 8b compares mean download time
for the selection techniques. As seen in the figure, SELF continues
to produce diminished elapsed times as the candidate size
increases, yielding the best results among selection techniques.
NEIGHBOR follows SELF with con-siderable gaps against the
conventional techniques. Inter-estingly, PROXIM shows unstable
results with greater fluctuation than RANDOM over the candidate
sizes. This result indicates that the proposed techniques not
only work better than conventional ones across candidate
sizes, but also further improve as the candidate size
increases.

4.4 Impact of Neighbor Size
We next investigate the impact of neighbor size on NEIGHBOR
(the other heuristics are not affected by this parameter). Fig. 9
shows how the selection techniques respond across the number of
neighbors (jNj). As can be seen in the figures, increasing the
neighbor size dramati-cally improves the performance, while the
others make no changes as expected. For example, the average
download time in jNj ¼ 16 is dropped to about 70 percent of the
time for jNj ¼ 2. The ratio to optimal is also dropped from 4.0 at
jNj ¼ 2 to 2.6 at jNj ¼ 16. This is because it has more chances to
obtain relevant observations with many more neighbors, thus
decreasing the possibility of random selection. This result
suggests that NEIGHBOR will work better in environments
where the node has connectivity with a greater number of
neighbors.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1917

Fig. 8. Impact of candidate size. (a) Mean ratio to optimal. (b) Mean download elapsed time.

4.5 Impact of Data Size
We continue to investigate how the selection techniques work
over different data sizes. Since the size of accessed objects can
vary depending on applications in reality, selection techniques
should work consistently across a range of data sizes. In this
experiment, we run the simulation with individual traces rather
than the mixture of the traces. In Fig. 10, we can see linear
relationship between data size and mean download time.
However, each technique shows a different degree of slope: SELF
and NEIGHBOR increase more gently than the conventional

heuristics. With simple calculation, the slopes (i.e., ₃y=₃x) of the
techniques are RANDOM = 10.9, PROXIM = 8.1, SELF = 3.8, and
NEIGHBOR = 5.1. This result implies that the proposed
techniques not only work consistently across different data
sizes, but they are also much more useful for data-intensive
applications.

4.6 Timeliness
While it is crucial to choose good nodes for job allocation, it is
also important to avoid bad nodes when making a decision. For
instance, selecting intolerably slow connec-tions may lead to job
incompletion due to excessive downloading cost or time-outs.
However, it is almost impossible to pick good nodes every time
because there are many contributing factors.

We observed how many times the techniques choose slow

connections. Fig. 11 shows the cumulative distributions of the
speed of connections with log-log scales, and we can see that the
proposed techniques more often avoid slow connections. SELF
most successfully excludes low-speed connections, and
NEIGHBOR also performs better than the conventional techniques.
When we count the number of poor connections selected, SELF
chose connections under 5 KB/s less than 30 times,while PROXIM
made more than 290 selections, which is almost an order of
magnitude larger than SELF. One interesting result is that PROXIM
selects poor connections more frequently than RANDOM (293 and
194 times, respec-tively). This implies that relying only on
latency information alone greatly increases the chance of
very poor connections, thus leading to unpredictable
response time. Compared to this, our proposed techniques
successfully reduce chances to choose low speed connections by
taking accessibility into account.

4.7 Multiobject Access
Many distributed applications request multiple objects [41],
which means that a job of such applications accesses more than
one object to complete the task. For example, bioinformatics
applications such as BLAST [15] repeatedly access remote gene
databases to compare patterns. We conducted experiments to see
the impact of multiobject access. Fig. 12 shows the results where
jobs require to access

Fig. 9. Impact of neighbor size.

Fig. 10. Impact of data size.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1918

Fig. 11. Cumulative distribution of download speed. Fig. 12. Multiobject access.

multiple objects. As can be seen in the figure, the ratio to optimal
gradually decreases with increasing number of objects for all
selection techniques. This is because even optimally selected
nodes may not have good performance to some objects, resulting
in greatly increased download times. SELF and NEIGHBOR not
only consistently outper-form the conventional techniques over
the number of objects, but they also approach optimal (ratio =
1.24 and 1.55 when the number of objects is 8). To sum it up, the
suggested techniques also work better than the conven-tional
techniques for multiobject access.

4.8 Impact of Churn
Churn is prevalent in loosely coupled distributed systems. To see
the impact of churn, we assume that mean session lengths of
nodes are exponentially distributed. In this context, the session
length is equivalent to the simulation time. For example, if the
session length of a node is 100, the node changes its status to
inactive after 100 simulation time steps. The node then joins
again after another 100 time steps. We assume that nodes lose all
past observations when they change status. Therefore, churn will
have a greater impact on our selection techniques because we rely
on historic observa-tions. In contrast, the conventional techniques
suffer little from churn since they do not have any dependence on
past observations. The virtual trace excludes objects for which
the relevant servers are inactive. We tested three mean session
lengths: s ¼ 100, s ¼ 1;000, and s ¼ 10;000, corresponding to
extreme, severe, and light churn rates, respectively.

Fig. 13 illustrates the impact of churn. As mentioned, there is
little impact on conventional techniques, while our techniques are
degraded in performance due to loss of observations. In Fig. 13a,
SELF is comparable to PROXIM even under extreme churn.
NEIGHBOR degrades and becomes worse than PROXIM under
severe churn (s ¼ 1;000). This is because NEIGHBOR is likely to
fail to collect the relevant observations, thus relying more on
random selection, while SELF can perform reasonably accurate
estimation with only a dozen of observations. Nonetheless,
NEIGHBOR still works better than PROXIM in light churn (s ¼
10;000) with lower overhead. Fig. 13b explains why NEIGHBOR
suffers under severe and extreme churn. In the figure, the
neighbor estimation rate means the fraction that NEIGHBOR
success-fully estimates based on neighbor estimation rather than
random selection. Under light churn, the neighbor estimation

rate is still over 90 percent, but it drops to 60-70 percent in severe
churn, implying that 30-40 percent of the decisions have been
made by random selection. Under extreme churn, the neighbor
estimation rate drops below 10 percent, so it essentially reduces to
RANDOM.

To summarize, the proposed techniques are fairly stable
under churn in which nodes suffer from loss of
observations. The result shows that SELF is comparable to
PROXIM even under extreme churn, while NEIGHBOR is
comparable to PROXIM when churn is light.

4.9 Impact of Replication
In loosely coupled distributed systems, replication is often used
to disseminate objects to provide locality in data access as well as
high availability. We investigate the impact of replication to see
if the proposed techniques consistently work in replicated
environments.

For this, we construct replicated environments in which same-
sized objects in the traces are grouped according to the replication
factor and the object in the group is considered as a replica. The
virtual trace is then constructed based on the group of the objects.
In detail, for all objects in the group, a randomly selected
download time from each candidate is recorded in the virtual
trace. The simulator then returns the download time according to
the selected candidate and the replica server.

RANDOM will work the same as in no-replication environment
with a random function to choose both a candidate and a replica
server. PROXIM measures latencies from every candidate to every
server, and then the pair with the smallest latency will be selected.
SELF is similar to PROXIM: each candidate calculates the
accessibility for each server and reports the best one. In the case
of NEIGHBOR, the candidate gathers all the relevant information
from the neighbors. If it finds more than one server, Neighbor
EstimðoÞ function is performed against each server, and then the
best one is reported to the initiator. For both SELF and
NEIGHBOR, the initiator finally selects the candidate with the best
accessibility.

Fig. 14 shows performance changes across replication factors
(jRj). It is likely that the performance of all selection techniques
improve as the replication factor increases because of data
locality, and the result agrees with this expectation, as shown in
Fig. 14b. PROXIM has significantly diminished mean download
time (nearly half) under

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1919

Fig. 13. Impact of churn. (a) Mean download elapsed time. (b) Neighbor estimation rate.

replication, but it is still worse than the proposed techniques.
SELF and NEIGHBOR outperform the conven-tional techniques
over all the replication factors. In Fig. 14a, we can see that SELF
further reduces ratio to optimal as replication factor increases,
while the others increase. NEIGHBOR widens the gap against
conventional techniques with increasing replication factor.

Next, we investigate the impact of churn in replicated
environments. First, we fix the replication factor at 4, and observe
the performance change over a set of mean session lengths. As
can be seen in Fig. 15a, the results are fairly similar with the ones
under churn in the nonreplicated environment. However, SELF is
a little worse than PROXIM under extreme churn. NEIGHBOR is
comparable to PROXIM under light churn, but degrades under
severe and extreme churn as in no replication. Then we
investigate performance sensitivity to the replication factor under
light churn (i.e., s ¼ 10,000). As seen in Fig. 15b, SELF is much
better than PROXIM across all replication factors. NEIGHBOR is
fairly comparable to PROXIM under light churn despite greater
chance of random selection.

To summarize, the proposed selection techniques consistently
outperform the conventional techniques in replicated environ-
ments. The results under churn are fairly consistent with the results
without replication: SELF is comparable to PROXIM

under severe churn and NEIGHBOR is comparable to PROXIM
under light churn.

5 RELATED WORK
5.1 Resource Discovery and Allocation
The work on resource discovery and allocation is closely related
to ours. Condor [42] provides a matchmaking framework which
provides a stateless matching service. In [7], the authors presented
a decentralized matchmaking based on aggregation of resource
information and Content Addressable Network (CAN) routing
[24]. The Cluster Computing on the Fly (CCOF) project [8] seeks
to harvest CPU cycles by using search methods in a peer-to-peer
computing environment. SWORD [27] provides distributed
resource discovery by a multiattribute range search against a DHT
on which the periodic measures of each node are stored. All these
techniques focused more on per-node characteristics of individual
nodes, e.g., CPU, memory, disk space, network interface, etc. In
contrast, our approach is more interested in pairwise
characteristics for the resource selection with considerations of
impact on end-to-end data access. SWORD [27] provides network
coordinates as the location information by using Vivaldi [37], but
the latency is not sufficient for bandwidth-demanding
applications.

Fig. 14. Performance under replicated environments. (a) Mean ratio to optimal. (b) Mean download elapsed time.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1920

Fig. 15. Impact of churn under replication. (a) Replication factor = 4. (b) Mean session length ¼ 10,000 (light churn).

5.2 Network Performance Estimation
Much research has been carried out in network perfor-mance
estimation for selection problems over the past decade. To infer
network performance, many estimators were employed. Some
research in [35], [43], [44], [45] focused on estimating available
bandwidth, the minimum available bandwidth of the links along
a path. Predicting RTT [20], [37], [46], [47], [48] has also been
extensively studied because it is a widely used metric in the
Internet today. TCP throughput [49], [50], [51] is also a
frequently used metric for network performance. In this paper, we
employ accessibility to quantitatively determine data access
capability between a pair of nodes.

Network performance estimation techniques fall into three
classes with respect to the measurement methods: active
probing, partial probing, and passive observing. Active
probing injects a chain of packets to measure the network
performance. Thus, the estimation is often believed fairly
accurate based on current network conditions, but it requires not
only time delay but also incurs additional traffic overhead for the
actual measurement. Meanwhile, many latency prediction
techniques uses partial probing. These techniques infer latency of

n
2
 pairs by OðnÞ probing. However, as latency may not be

directly correlated to network bandwidth, selections relying only
on latency can mislead bandwidth-demanding applications.
Passive techniques utilize past collected observations for the
estimation. This approach is attractive because it makes a timely
prediction with little additional traffic. However, existing
techniques are limited by topological regions (e.g., LANs or IP
prefixes) for sharing observations. In contrast to this, our passive
estimation technique, neighbor estimation, has no such
topological or geographical constraints, and yields good accuracy,
sufficient for the selection problems to which it has been applied.

6 CONCLUSION

Accessibility is a crucial concern for an increasing number of
data-intensive applications in loosely coupled distributed systems.
Such applications require more sophisticated resource selection
due to bandwidth and connectivity unpredictability. In this paper,
we presented decentralized, scalable, and efficient resource
selection techniques based on accessibility. Our techniques rely
only on local, historic

observations, so it is possible to keep network overhead tolerable.
We showed that our estimation techniques are sufficiently
accurate to provide a meaningful rank order of nodes based on
their accessibility. Our techniques outper-form conventional
approaches and are reasonably close to the optimal selection. In
particular, the self-estimation-based selection approached 1.4 of
optimal over time, the neighbor estimation-based selection was
within 2.6 of optimal with 16 neighbors, compared to a proximity-
based selection that was over three times the optimal. With
respect to the mean elapsed time, the self- and neighbor-
estimation-based selections were, respectively, 52 and 70 percent
more efficient than proximity-based selection. We also investi-
gated how our techniques work under node churn and showed that
they work well under churn circumstances in which nodes suffer
from loss of observations. Finally, we showed that our techniques
consistently outperform conventional techniques in replicated
environments.

In this work, we focused on performance for the accessibility
metric. The next step is to capture availability as well as
performance to take dynamism into account. In addition to this,
we plan to extend our work by providing system-wide
dissemination of observations so that the node has more chances
to see relevant observations in estimation. This is reasonable
since neighbor estimation has no constraints on topological or
geographical similarities to utilize observations coming from
other nodes.

REFERENCES
[1] D.P. Anderson and G. Fedak, “The Computational and Storage Potential
 of Volunteer Computing,” Proc. IEEE Int’l Symp. Cluster Computing
 and the Grid (CCGRID ’06), pp. 73-80, 2006.
[2] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly Durable,
 Decentralized Storage Despite Massive Correlated Fail-ures,” Proc.
 Symp. Networked Systems Design and Implementation (NSDI ’05),
 May 2005.
[3] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S.
 Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
 “Oceanstore: An Architecture for Global-Scale Persistent Storage,”

Proc. ACM Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’07), Nov. 2000.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1921

[4] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G.M. Voelker,

“Total Recall: System Support for Automated Availability
Management,” Proc. Symp. Networked Systems Design and
Imple-mentation (NSDI ’04), p. 25, 2004.

[5] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: Architecture
and Performance of an Enterprise Desktop Grid System,” J. Parallel
and Distributed Computing, vol. 63, no. 5 pp. 597-610, 2003.

[6] D. Kondo, A.A. Chien, and H. Casanova, “Resource Management for

Rapid Application Turnaround on Enterprise Desktop Grids,”
Proc. ACM/IEEE Conf. Supercomputing (SC ’04), p. 17, 2004.

[7] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and
A. Sussman, “Resource Discovery Techniques in Distributed Desktop
Grid Environments,” Proc. IEEE/ACM Int’l Conf. Grid Computing
(GRID ’06), Sept. 2006.

[8] D. Zhou and V. Lo, “Cluster Computing on the Fly: Resource Discovery
in a Cycle Sharing Peer-to-Peer System,” Proc. IEEE Int’l Symp.
Cluster Computing and the Grid (CCGRID ’04), pp. 66-73, 2004.

[9] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“Seti@home: An Experiment in Public-Resource Computing,” Comm.
ACM, vol. 45, no. 11, pp. 56-61, 2002.

[10] “Search for Extraterrestrial Intelligence (SETI) Project,” http://
setiathome.berkeley.edu, 2009.

[11] “BOINC: Berkeley Open Infrastructure for Network Computing,”
http://boinc.berkeley.edu/, 2009.

[12] “PPDG: Particle Physics Data Grid,” http://www.ppdg.net, 2009.
[13] N. Massey, T. Aina, M. Allen, C. Christensen, D. Frame, D. Goodman,

J. Kettleborough, A. Martin, S. Pascoe, and D. Stainforth, “Data Access
and Analysis with Distributed Federated Data Servers in
climateprediction.net,” Advances in Geosciences, vol. 8,
pp. 49-56, June 2006.

[14] G.B. Berriman, A.C. Laity, J.C. Good, J.C. Jacob, D.S. Katz, E.
Deelman, G. Singh, M.-H. Su, and T.A. Prince, “Montage: The
Architecture and Scientific Applications of a National Virtual
Observatory Service for Computing Astronomical Image Mosaics,”
Proc. Earth Sciences Technology Conf., 2006.

[15] “BLAST: The Basic Local Alignment Search Tool,” http://
www.ncbi.nlm.nih.gov/blast, 2009.

[16] W. Hoschek, F.J. Jae´n-Martı´nez, A. Samar, H. Stockinger, and
K. Stockinger, “Data Management in an International Data Grid
Project,” Proc. IEEE/ACM Int’l Conf. Grid Computing (GRID ’00),
pp. 77-90, 2000.

[17] Y.-M. Teo, X. Wang, and Y.-K. Ng, “Glad: A System for Developing
and Deploying Large-Scale Bioinformatics Grid,” Bioinformatics, vol.
21, no. 6, pp. 794-802, 2005.

[18] S. Hotz, “Routing Information Organization to Support Scalable
Interdomain Routing with Heterogeneous Path Requirements,” PhD
dissertation, 1994.

[19] J.D. Guyton and M.F. Schwartz, “Locating Nearby Copies of Replicated
Internet Servers,” SIGCOMM Computer Comm. Rev., vol. 25, no. 4,
pp. 288-298, 1995.

[20] E. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordiantes-Based Approaches,” Proc. IEEE INFOCOM ’02,
pp. 170-179, 2002.

[21] E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-
to-Peer Networks,” Proc. ACM SIGCOMM ’02, pp. 177-190, 2002.

[22] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication

in Unstructured Peer-to-Peer Networks,” Proc. ACM SIGMETRICS
’02, pp. 258-259, 2002.

[23] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM ’01, pp. 149-160, 2001.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
Scalable Content-Addressable Network,” Proc. ACM SIG-COMM ’01,
pp. 161-172, 2001.

[25] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Sys-tems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms (Middleware
’01), pp. 329-350, Nov. 2001.

[26] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
“Tapestry: A Resilient Global-Scale Overlay for Service Deployment,”
IEEE J. Selected Areas in Comm., 2003.

[27] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Design and
Implementation Tradeoffs for Wide Area Resource Discovery,” Proc.
Int’l Symp. High Performance Distributed Comput-ing (HPDC),
2005.

[28] “PlanetLab,” http://www.planet-lab.org, 2009.
[29] S.G. Dykes, K.A. Robbins, and C.L. Jeffery, “An Empirical Evaluation

of Client-Side Server Selection Algorithms,” Proc. IEEE INFOCOM
’00, pp. 1361-1370, 2000.

[30] Using Using Data Accessibility for Resource Selection in Large-Scale
 Distributed Systems, IEEE Conference, June 2009.

AUTHOR PROFILES

Bachina Anusha Revieved B.Tech in
2008. She is pursuing M.Tech in QIS
College of Engineering &
Technology, Ongole.She is very
interested in Distributed systems and
Netwoking.

VENKATA SUBBAREDDY
PALLAMEDDY received M.E
degree in Computer Science &
Engg in 2007. His Research
Areas are Data Ming,
Networking, Data ware housing
and Artificial Intelligence.He has
published large number of papers
in different National &
International Conferences and
International journals . He is
Editorial

Board Member for International Journal of Computer
Technology and Applications (IJCTA), International
Journal of Computer Trends and Technology (IJCTT),
International Journal of Engineering Trends and
Technology (IJETT) and Technical reviewer of many
International journals. He is a member of International
Association of Engineers, IACSI and ISTE.

T.V.Sai Krishna Received His
M.Tech From JNTU in 2007.He is
currently Research Scholar of JNTU
Kakinada.His Research Areas are
data mining ,Data Ware housing &
Image Processing.

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1922

